44.4.1 problem 1 (a)

Internal problem ID [7014]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 1 (a)
Date solved : Monday, January 27, 2025 at 02:40:59 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (-2\right )&=1 \end{align*}

Solution by Maple

Time used: 0.125 (sec). Leaf size: 84

dsolve([diff(y(x),x)=x^2-y(x)^2,y(-2) = 1],y(x), singsol=all)
 
\[ y = -\frac {2 x \left (\left (\frac {\operatorname {BesselK}\left (\frac {1}{4}, 2\right )}{2}-\operatorname {BesselK}\left (\frac {3}{4}, 2\right )\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (\operatorname {BesselI}\left (-\frac {3}{4}, 2\right )+\frac {\operatorname {BesselI}\left (\frac {1}{4}, 2\right )}{2}\right )\right )}{\left (2 \operatorname {BesselK}\left (\frac {3}{4}, 2\right )-\operatorname {BesselK}\left (\frac {1}{4}, 2\right )\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+2 \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \left (\operatorname {BesselI}\left (-\frac {3}{4}, 2\right )+\frac {\operatorname {BesselI}\left (\frac {1}{4}, 2\right )}{2}\right )} \]

Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 235

DSolve[{D[y[x],x]==x^2-y[x]^2,{y[-2]==1}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {x^2 \left (-4 i \operatorname {BesselJ}\left (-\frac {5}{4},2 i\right )-5 \operatorname {BesselJ}\left (-\frac {1}{4},2 i\right )+4 i \operatorname {BesselJ}\left (\frac {3}{4},2 i\right )\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )+2 x^2 \left (2 i \operatorname {BesselJ}\left (-\frac {3}{4},2 i\right )+\operatorname {BesselJ}\left (\frac {1}{4},2 i\right )\right ) \operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )+2 \left (2 \operatorname {BesselJ}\left (-\frac {3}{4},2 i\right )-i \operatorname {BesselJ}\left (\frac {1}{4},2 i\right )\right ) \left (\operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )-i x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )\right )}{x \left (\left (8 \operatorname {BesselJ}\left (-\frac {3}{4},2 i\right )-4 i \operatorname {BesselJ}\left (\frac {1}{4},2 i\right )\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )+\left (-4 \operatorname {BesselJ}\left (-\frac {5}{4},2 i\right )+5 i \operatorname {BesselJ}\left (-\frac {1}{4},2 i\right )+4 \operatorname {BesselJ}\left (\frac {3}{4},2 i\right )\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )\right )} \]