44.4.2 problem 1 (b)

Internal problem ID [7015]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 1 (b)
Date solved : Monday, January 27, 2025 at 02:41:01 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (3\right )&=0 \end{align*}

Solution by Maple

Time used: 0.073 (sec). Leaf size: 55

dsolve([diff(y(x),x)=x^2-y(x)^2,y(3) = 0],y(x), singsol=all)
 
\[ y = \frac {x \left (\operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselK}\left (\frac {3}{4}, \frac {9}{2}\right )-\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {9}{2}\right )\right )}{\operatorname {BesselK}\left (\frac {3}{4}, \frac {9}{2}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {9}{2}\right )} \]

Solution by Mathematica

Time used: 0.082 (sec). Leaf size: 216

DSolve[{D[y[x],x]==x^2-y[x]^2,{y[3]==0}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {x^2 \left (-9 i \operatorname {BesselJ}\left (-\frac {5}{4},\frac {9 i}{2}\right )-\operatorname {BesselJ}\left (-\frac {1}{4},\frac {9 i}{2}\right )+9 i \operatorname {BesselJ}\left (\frac {3}{4},\frac {9 i}{2}\right )\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )+9 i x^2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {9 i}{2}\right ) \operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )+9 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {9 i}{2}\right ) \left (\operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )-i x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )\right )}{x \left (18 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {9 i}{2}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )+\left (-9 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {9 i}{2}\right )+i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {9 i}{2}\right )+9 \operatorname {BesselJ}\left (\frac {3}{4},\frac {9 i}{2}\right )\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )\right )} \]