44.4.2 problem 1 (b)
Internal
problem
ID
[7015]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.1
Solution
curves
without
a
solution.
Exercises
2.1
at
page
44
Problem
number
:
1
(b)
Date
solved
:
Monday, January 27, 2025 at 02:41:01 PM
CAS
classification
:
[_Riccati]
\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}
With initial conditions
\begin{align*} y \left (3\right )&=0 \end{align*}
✓ Solution by Maple
Time used: 0.073 (sec). Leaf size: 55
dsolve([diff(y(x),x)=x^2-y(x)^2,y(3) = 0],y(x), singsol=all)
\[
y = \frac {x \left (\operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselK}\left (\frac {3}{4}, \frac {9}{2}\right )-\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {9}{2}\right )\right )}{\operatorname {BesselK}\left (\frac {3}{4}, \frac {9}{2}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {9}{2}\right )}
\]
✓ Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 216
DSolve[{D[y[x],x]==x^2-y[x]^2,{y[3]==0}},y[x],x,IncludeSingularSolutions -> True]
\[
y(x)\to \frac {x^2 \left (-9 i \operatorname {BesselJ}\left (-\frac {5}{4},\frac {9 i}{2}\right )-\operatorname {BesselJ}\left (-\frac {1}{4},\frac {9 i}{2}\right )+9 i \operatorname {BesselJ}\left (\frac {3}{4},\frac {9 i}{2}\right )\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )+9 i x^2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {9 i}{2}\right ) \operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )+9 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {9 i}{2}\right ) \left (\operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )-i x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )\right )}{x \left (18 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {9 i}{2}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )+\left (-9 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {9 i}{2}\right )+i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {9 i}{2}\right )+9 \operatorname {BesselJ}\left (\frac {3}{4},\frac {9 i}{2}\right )\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )\right )}
\]