44.4.3 problem 1 (c)

Internal problem ID [7016]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 1 (c)
Date solved : Tuesday, January 28, 2025 at 03:10:38 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \end{align*}

Solution by Maple

Time used: 0.816 (sec). Leaf size: 177

dsolve([diff(y(x),x)=x^2-y(x)^2,y(0) = 2],y(x), singsol=all)
 
\[ y = \left \{\begin {array}{cc} \frac {2 x \left (\pi \left (-\frac {\Gamma \left (\frac {3}{4}\right )^{2} \sqrt {2}}{2}+\pi \right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}\right )}{\left (-\Gamma \left (\frac {3}{4}\right )^{2} \pi \sqrt {2}+2 \pi ^{2}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )-2 \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}} & x <0 \\ 2 & x =0 \\ \frac {x \left (\left (\sqrt {2}\, \pi \operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )-2 \operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right )\right ) \Gamma \left (\frac {3}{4}\right )^{2}+2 \pi ^{2} \operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )\right )}{\sqrt {2}\, \pi \Gamma \left (\frac {3}{4}\right )^{2} \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+2 \pi ^{2} \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+2 \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}} & 0<x \end {array}\right . \]

Solution by Mathematica

Time used: 0.480 (sec). Leaf size: 146

DSolve[{D[y[x],x]==x^2-y[x]^2,{y[0]==2}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {\sqrt {2} \operatorname {Gamma}\left (\frac {3}{4}\right ) \left (x^2 \left (-\operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )\right )+x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )+i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )\right )-(2-2 i) x^2 \operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )}{2 i \sqrt {2} x \operatorname {Gamma}\left (\frac {3}{4}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )+(2+2 i) x \operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )} \]