Internal
problem
ID
[6749]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
17.
Linear
equations
with
variable
coefficients
(Cauchy
and
Legndre).
Supplemetary
problems.
Page
110
Problem
number
:
6
Date
solved
:
Wednesday, March 05, 2025 at 02:42:41 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+4*y(x) = x+ln(x)*x^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+4*y[x]==x+x^2*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*log(x) + x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) - x + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)