Internal
problem
ID
[6750]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
17.
Linear
equations
with
variable
coefficients
(Cauchy
and
Legndre).
Supplemetary
problems.
Page
110
Problem
number
:
7
Date
solved
:
Wednesday, March 05, 2025 at 02:42:43 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = ln(x)^2-ln(x^2); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==(Log[x])^2-Log[x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) + 2*y(x) - log(x)**2 + log(x**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)