45.2.3 problem 3

Internal problem ID [7226]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239
Problem number : 3
Date solved : Monday, January 27, 2025 at 02:48:29 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 59

Order:=6; 
dsolve((x^2-9)^2*diff(y(x),x$2)+(x+3)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{81} x^{2}+\frac {1}{6561} x^{3}-\frac {289}{708588} x^{4}+\frac {304}{23914845} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{54} x^{2}-\frac {13}{2187} x^{3}-\frac {131}{236196} x^{4}-\frac {596}{1594323} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 70

AsymptoticDSolveValue[(x^2-9)^2*D[y[x],{x,2}]+(x+3)*D[y[x],x]+2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {304 x^5}{23914845}-\frac {289 x^4}{708588}+\frac {x^3}{6561}-\frac {x^2}{81}+1\right )+c_2 \left (-\frac {596 x^5}{1594323}-\frac {131 x^4}{236196}-\frac {13 x^3}{2187}-\frac {x^2}{54}+x\right ) \]