45.2.4 problem 4

Internal problem ID [7227]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239
Problem number : 4
Date solved : Monday, January 27, 2025 at 02:48:30 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 52

Order:=6; 
dsolve(diff(y(x),x$2)-1/x*diff(y(x),x)+1/(x-1)^3*y(x)=0,y(x),type='series',x=0);
 
\[ y = c_{1} x^{2} \left (1+\frac {1}{8} x^{2}+\frac {1}{5} x^{3}+\frac {49}{192} x^{4}+\frac {423}{1400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (\ln \left (x \right ) \left (-x^{2}-\frac {1}{8} x^{4}-\frac {1}{5} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (-2-2 x^{3}-\frac {45}{32} x^{4}-\frac {34}{25} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right ) \]

Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 71

AsymptoticDSolveValue[D[y[x],{x,2}]-1/x*D[y[x],x]+1/(x-1)^3*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {1}{16} \left (x^2+8\right ) x^2 \log (x)+\frac {1}{64} \left (-5 x^4+64 x^3-400 x^2+64\right )\right )+c_2 \left (\frac {49 x^6}{192}+\frac {x^5}{5}+\frac {x^4}{8}+x^2\right ) \]