45.4.7 problem 15

Internal problem ID [7289]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review exercises. page 253
Problem number : 15
Date solved : Monday, January 27, 2025 at 02:49:46 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=3\\ y^{\prime }\left (0\right )&=-2 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 20

Order:=6; 
dsolve([diff(y(x),x$2)+x*diff(y(x),x)+2*y(x)=0,y(0) = 3, D(y)(0) = -2],y(x),type='series',x=0);
 
\[ y = 3-2 x -3 x^{2}+x^{3}+x^{4}-\frac {1}{4} x^{5}+\operatorname {O}\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 26

AsymptoticDSolveValue[{D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0,{y[0]==3,Derivative[1][y][0] ==-2}},y[x],{x,0,"6"-1}]
 
\[ y(x)\to -\frac {x^5}{4}+x^4+x^3-3 x^2-2 x+3 \]