45.4.8 problem 16

Internal problem ID [7290]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section : Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Chapter 6 review exercises. page 253
Problem number : 16
Date solved : Monday, January 27, 2025 at 02:49:46 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} \left (x +2\right ) y^{\prime \prime }+3 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Solution by Maple

Time used: 0.000 (sec). Leaf size: 14

Order:=6; 
dsolve([(x+2)*diff(y(x),x$2)+3*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);
 
\[ y = x -\frac {1}{4} x^{3}+\frac {1}{16} x^{4}+\operatorname {O}\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 19

AsymptoticDSolveValue[{(x+2)*D[y[x],{x,2}]+3*y[x]==0,{y[0]==0,Derivative[1][y][0] ==1}},y[x],{x,0,"6"-1}]
 
\[ y(x)\to \frac {x^4}{16}-\frac {x^3}{4}+x \]