46.2.1 problem 2

Internal problem ID [7304]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended Power Series Method: Frobenius Method page 186
Problem number : 2
Date solved : Monday, January 27, 2025 at 02:49:59 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 49

Order:=6; 
dsolve((x-2)^2*diff(y(x),x$2)+(x+2)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{8} x^{2}+\frac {1}{48} x^{3}-\frac {1}{480} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{4} x^{2}-\frac {1}{24} x^{3}+\frac {1}{240} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 56

AsymptoticDSolveValue[(x-2)^2*D[y[x],{x,2}]+(x+2)*D[y[x],x]-y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{480}+\frac {x^3}{48}+\frac {x^2}{8}+1\right )+c_2 \left (\frac {x^5}{240}-\frac {x^3}{24}-\frac {x^2}{4}+x\right ) \]