44.1.48 problem 50

Internal problem ID [6923]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 50
Date solved : Friday, March 14, 2025 at 01:49:10 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d^{2}}{d t^{2}}x \left (t \right )&=4 y \left (t \right )+{\mathrm e}^{t}\\ \frac {d^{2}}{d t^{2}}y \left (t \right )&=4 x \left (t \right )-{\mathrm e}^{t} \end{align*}

Maple. Time used: 0.035 (sec). Leaf size: 67
ode:=[diff(diff(x(t),t),t) = 4*y(t)+exp(t), diff(diff(y(t),t),t) = 4*x(t)-exp(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= \frac {{\mathrm e}^{t}}{5}+\cos \left (2 t \right ) c_{1} +{\mathrm e}^{-2 t} c_{2} +c_3 \,{\mathrm e}^{2 t}+c_4 \sin \left (2 t \right ) \\ y \left (t \right ) &= -\frac {{\mathrm e}^{t}}{5}-\cos \left (2 t \right ) c_{1} +{\mathrm e}^{-2 t} c_{2} +c_3 \,{\mathrm e}^{2 t}-c_4 \sin \left (2 t \right ) \\ \end{align*}
Mathematica. Time used: 0.067 (sec). Leaf size: 218
ode={D[x[t],{t,2}]==4*y[t]+Exp[t],D[y[t],{t,2}]==4*x[t]-Exp[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{40} e^{-2 t} \left (8 e^{3 t}+10 c_1 e^{4 t}+5 c_2 e^{4 t}+10 c_3 e^{4 t}+5 c_4 e^{4 t}+20 (c_1-c_3) e^{2 t} \cos (2 t)+10 (c_2-c_4) e^{2 t} \sin (2 t)+10 c_1-5 c_2+10 c_3-5 c_4\right ) \\ y(t)\to \frac {1}{40} e^{-2 t} \left (-8 e^{3 t}+10 c_1 e^{4 t}+5 c_2 e^{4 t}+10 c_3 e^{4 t}+5 c_4 e^{4 t}-20 (c_1-c_3) e^{2 t} \cos (2 t)-10 (c_2-c_4) e^{2 t} \sin (2 t)+10 c_1-5 c_2+10 c_3-5 c_4\right ) \\ \end{align*}
Sympy. Time used: 0.397 (sec). Leaf size: 119
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-4*y(t) - exp(t) + Derivative(x(t), (t, 2)),0),Eq(-4*x(t) + exp(t) + Derivative(y(t), (t, 2)),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \frac {C_{1} e^{- 2 t}}{2} + \frac {C_{2} e^{2 t}}{2} - \frac {C_{3} \sin {\left (2 t \right )}}{2} - \frac {C_{4} \cos {\left (2 t \right )}}{2} + \frac {e^{t} \sin ^{2}{\left (2 t \right )}}{5} + \frac {e^{t} \cos ^{2}{\left (2 t \right )}}{5}, \ y{\left (t \right )} = - \frac {C_{1} e^{- 2 t}}{2} + \frac {C_{2} e^{2 t}}{2} + \frac {C_{3} \sin {\left (2 t \right )}}{2} + \frac {C_{4} \cos {\left (2 t \right )}}{2} - \frac {e^{t} \sin ^{2}{\left (2 t \right )}}{5} - \frac {e^{t} \cos ^{2}{\left (2 t \right )}}{5}\right ] \]