46.5.7 problem 17

Internal problem ID [7343]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number : 17
Date solved : Monday, January 27, 2025 at 02:50:45 PM
CAS classification : [_Laguerre]

\begin{align*} x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 44

Order:=6; 
dsolve(x*diff(y(x),x$2)-(x+1)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y = c_{1} x^{2} \left (1+\frac {1}{3} x +\frac {1}{12} x^{2}+\frac {1}{60} x^{3}+\frac {1}{360} x^{4}+\frac {1}{2520} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (-2-2 x -x^{2}-\frac {1}{3} x^{3}-\frac {1}{12} x^{4}-\frac {1}{60} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 66

AsymptoticDSolveValue[x*D[y[x],{x,2}]-(x+1)*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^4}{24}+\frac {x^3}{6}+\frac {x^2}{2}+x+1\right )+c_2 \left (\frac {x^6}{360}+\frac {x^5}{60}+\frac {x^4}{12}+\frac {x^3}{3}+x^2\right ) \]