46.5.8 problem 18

Internal problem ID [7344]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. REVIEW QUESTIONS. page 201
Problem number : 18
Date solved : Monday, January 27, 2025 at 02:50:46 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 28

Order:=6; 
dsolve(x*diff(y(x),x$2)+3*diff(y(x),x)+4*x^3*y(x)=0,y(x),type='series',x=0);
 
\[ y = c_{1} \left (1-\frac {1}{6} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_{2} \left (-2+x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x^{2}} \]

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 30

AsymptoticDSolveValue[x*D[y[x],{x,2}]+3*D[y[x],x]+4*x^3*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (1-\frac {x^4}{6}\right )+c_1 \left (\frac {1}{x^2}-\frac {x^2}{2}\right ) \]