Internal
problem
ID
[7319]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
5.
Series
Solutions
of
ODEs.
Special
Functions.
Problem
set
5.3.
Extended
Power
Series
Method:
Frobenius
Method
page
186
Problem
number
:
18
Date
solved
:
Wednesday, March 05, 2025 at 04:23:16 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=4*(t^2-3*t+2)*diff(diff(y(t),t),t)-2*diff(y(t),t)+y(t) = 0; dsolve(ode,y(t),type='series',t=0);
ode=4*(t^2-3*t+2)*D[y[t],{t,2}]-2*D[y[t],t]+y[t]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[t],{t,0,5}]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((4*t**2 - 12*t + 8)*Derivative(y(t), (t, 2)) + y(t) - 2*Derivative(y(t), t),0) ics = {} dsolve(ode,func=y(t),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)