Internal
problem
ID
[7320]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
5.
Series
Solutions
of
ODEs.
Special
Functions.
Problem
set
5.3.
Extended
Power
Series
Method:
Frobenius
Method
page
186
Problem
number
:
19
Date
solved
:
Wednesday, March 05, 2025 at 04:23:17 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=2*(t^2-5*t+6)*diff(diff(y(t),t),t)+(2*t-3)*diff(y(t),t)-8*y(t) = 0; dsolve(ode,y(t),type='series',t=0);
ode=2*(t^2-5*t+6)*D[y[t],{t,2}]+(2*t-3)*D[y[t],t]-8*y[t]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[t],{t,0,5}]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((2*t - 3)*Derivative(y(t), t) + (2*t**2 - 10*t + 12)*Derivative(y(t), (t, 2)) - 8*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)