Internal
problem
ID
[7360]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.2,
page
216
Problem
number
:
14
Date
solved
:
Wednesday, March 05, 2025 at 04:24:00 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+5*y(t) = 50*t-100; ic:=y(2) = -4, D(y)(2) = 14; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+2*D[y[t],t]+5*y[t]==50*t-100; ic={y[2]==-4,Derivative[1][y][2]==14}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-50*t + 5*y(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)) + 100,0) ics = {y(2): -4, Subs(Derivative(y(t), t), t, 2): 14} dsolve(ode,func=y(t),ics=ics)