Internal
problem
ID
[7361]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.2,
page
216
Problem
number
:
15
Date
solved
:
Wednesday, March 05, 2025 at 04:24:01 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+3*diff(y(t),t)-4*y(t) = 6*exp(2*t-3); ic:=y(3/2) = 4, D(y)(3/2) = 5; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+3*D[y[t],t]-4*y[t]==6*Exp[2*t-3]; ic={y[15/10]==4,Derivative[1][y][15/10 ]==5}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-4*y(t) - 6*exp(2*t - 3) + 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(3/2): 4, Subs(Derivative(y(t), t), t, 3/2): 5} dsolve(ode,func=y(t),ics=ics)