Internal
problem
ID
[7429]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
13
Date
solved
:
Wednesday, March 05, 2025 at 04:32:25 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
With initial conditions
ode:=x^2+2*x*y(x)-y(x)^2+(y(x)^2+2*x*y(x)-x^2)*diff(y(x),x) = 0; ic:=y(1) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=(x^2+2*x*y[x]-y[x]^2)+(y[x]^2+2*x*y[x]-x^2)*D[y[x],x]==0; ic={y[1]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
{}
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 + 2*x*y(x) + (-x**2 + 2*x*y(x) + y(x)**2)*Derivative(y(x), x) - y(x)**2,0) ics = {y(1): -1} dsolve(ode,func=y(x),ics=ics)