48.1.3 problem Example 3.3

Internal problem ID [7504]
Book : THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section : Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE. Page 114
Problem number : Example 3.3
Date solved : Wednesday, March 05, 2025 at 04:41:13 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {3 x^{2}+4 x +2}{2 y-2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=-1 \end{align*}

Maple. Time used: 0.018 (sec). Leaf size: 19
ode:=diff(y(x),x) = (3*x^2+4*x+2)/(-2+2*y(x)); 
ic:=y(0) = -1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 1-\sqrt {\left (x +2\right ) \left (x^{2}+2\right )} \]
Mathematica. Time used: 0.146 (sec). Leaf size: 26
ode=D[y[x],x]==(3*x^2+4*x+2)/(2*(y[x]-1)); 
ic={y[0]==-1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 1-\sqrt {x^3+2 x^2+2 x+4} \]
Sympy. Time used: 0.588 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (3*x**2 + 4*x + 2)/(2*y(x) - 2),0) 
ics = {y(0): -1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 1 - \sqrt {x^{3} + 2 x^{2} + 2 x + 4} \]