Internal
problem
ID
[7504]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.2
FIRST
ORDER
ODE.
Page
114
Problem
number
:
Example
3.3
Date
solved
:
Wednesday, March 05, 2025 at 04:41:13 AM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(x),x) = (3*x^2+4*x+2)/(-2+2*y(x)); ic:=y(0) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==(3*x^2+4*x+2)/(2*(y[x]-1)); ic={y[0]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (3*x**2 + 4*x + 2)/(2*y(x) - 2),0) ics = {y(0): -1} dsolve(ode,func=y(x),ics=ics)