Internal
problem
ID
[7505]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.2
FIRST
ORDER
ODE.
Page
114
Problem
number
:
Example
3.4
Date
solved
:
Wednesday, March 05, 2025 at 04:41:16 AM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=x*diff(y(x),x)-2*(x*y(x))^(1/2) = y(x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-2*Sqrt[x*y[x]]==y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - 2*sqrt(x*y(x)) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)