50.5.18 problem 5(c)

Internal problem ID [7888]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number : 5(c)
Date solved : Monday, January 27, 2025 at 03:31:06 PM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y^{\prime }&=\frac {y-x y^{2}}{x +x^{2} y} \end{align*}

Solution by Maple

Time used: 0.043 (sec). Leaf size: 17

dsolve(diff(y(x),x)=(y(x)-x*y(x)^2)/(x+x^2*y(x)),y(x), singsol=all)
 
\[ y = \frac {\operatorname {LambertW}\left (x^{2} {\mathrm e}^{-2 c_{1}}\right )}{x} \]

Solution by Mathematica

Time used: 60.411 (sec). Leaf size: 31

DSolve[D[y[x],x]==(y[x]-x*y[x]^2)/(x+x^2*y[x]),y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {W\left (e^{\frac {1}{2} \left (-2-9 \sqrt [3]{-2} c_1\right )} x^2\right )}{x} \]