49.2.7 problem 3

Internal problem ID [7597]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 1.6 Introduction– Linear equations of First Order. Page 41
Problem number : 3
Date solved : Wednesday, March 05, 2025 at 04:47:28 AM
CAS classification : [_quadrature]

\begin{align*} L y^{\prime }+R y&=E \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 21
ode:=L*diff(y(x),x)+R*y(x) = E; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-\frac {R x}{L}} c_{1} R +E}{R} \]
Mathematica. Time used: 0.057 (sec). Leaf size: 23
ode=L*D[y[x],x]+R*y[x]==e0; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\text {E0}-\text {E0} e^{-\frac {R x}{L}}}{R} \]
Sympy. Time used: 0.180 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
E = symbols("E") 
L = symbols("L") 
R = symbols("R") 
y = Function("y") 
ode = Eq(L*Derivative(y(x), x) + R*y(x) - E,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \frac {R x}{L}} + \frac {e}{R} \]