Internal
problem
ID
[7598]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
1.6
Introduction–
Linear
equations
of
First
Order.
Page
41
Problem
number
:
4
Date
solved
:
Wednesday, March 05, 2025 at 04:47:29 AM
CAS
classification
:
[[_linear, `class A`]]
With initial conditions
ode:=L*diff(y(x),x)+R*y(x) = E*sin(omega*x); ic:=y(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=L*D[y[x],x]+R*y[x]==e0*Sin[\[Omega]*x]; ic={y[0]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") E = symbols("E") L = symbols("L") R = symbols("R") omega = symbols("omega") y = Function("y") ode = Eq(L*Derivative(y(x), x) + R*y(x) - E*sin(omega*x),0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)