50.13.11 problem 11

Internal problem ID [8026]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 11
Date solved : Monday, January 27, 2025 at 03:36:55 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 23

dsolve(diff(y(x),x$4)+2*diff(y(x),x$3)+2*diff(y(x),x$2)+2*diff(y(x),x)+y(x)=0,y(x), singsol=all)
 
\[ y = {\mathrm e}^{-x} \left (c_{2} x +c_{1} \right )+c_3 \sin \left (x \right )+c_4 \cos \left (x \right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 34

DSolve[D[y[x],{x,4}]+2*D[y[x],{x,3}]+2*D[y[x],{x,2}]+2*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-x} \left (c_4 x+c_1 e^x \cos (x)+c_2 e^x \sin (x)+c_3\right ) \]