50.13.12 problem 12

Internal problem ID [8027]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 12
Date solved : Monday, January 27, 2025 at 03:36:56 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y&=0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 28

dsolve(diff(y(x),x$4)+2*diff(y(x),x$3)-2*diff(y(x),x$2)-6*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)
 
\[ y = {\mathrm e}^{-2 x} \left (\left (c_{2} x +c_{1} \right ) {\mathrm e}^{3 x}+c_3 \sin \left (x \right )+c_4 \cos \left (x \right )\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 35

DSolve[D[y[x],{x,4}]+2*D[y[x],{x,3}]-2*D[y[x],{x,2}]-6*D[y[x],x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-2 x} \left (e^{3 x} (c_4 x+c_3)+c_2 \cos (x)+c_1 \sin (x)\right ) \]