4.24.40 Problems 3901 to 4000

Table 4.1089: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

19339

\[ {} x^{4} y^{\prime \prime } = \left (x^{3}+2 x y\right ) y^{\prime }-4 y^{2} \]

19340

\[ {} x^{4} y^{\prime \prime }-x^{3} y^{\prime } = x^{2} {y^{\prime }}^{2}-4 y^{2} \]

19341

\[ {} x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2} \]

19342

\[ {} y^{\prime \prime } = {\mathrm e}^{y} \]

19345

\[ {} x^{2} y^{\prime \prime \prime \prime }+1 = 0 \]

19347

\[ {} y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

19348

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19349

\[ {} -a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

19350

\[ {} \sin \left (y\right )^{3} y^{\prime \prime } = \cos \left (y\right ) \]

19351

\[ {} {\mathrm e}^{x} \left (x y^{\prime \prime }-y^{\prime }\right ) = x^{3} \]

19352

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

19353

\[ {} 2 x y^{\prime \prime \prime } y^{\prime \prime } = {y^{\prime \prime }}^{2}-a^{2} \]

19354

\[ {} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19355

\[ {} \left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 x y^{\prime }+6 y = 6 \]

19356

\[ {} y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

19357

\[ {} x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

19358

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime } = y+{\mathrm e}^{x} \]

19359

\[ {} \left (1+x \right ) y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }+\left (5+x \right ) y = {\mathrm e}^{x} \]

19360

\[ {} \left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

19361

\[ {} y^{\prime \prime }+x y^{\prime }-y = X \]

19362

\[ {} y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0 \]

19363

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19364

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = x^{3} {\mathrm e}^{x} \]

19365

\[ {} y^{\prime \prime }-a x y^{\prime }+a^{2} \left (x -1\right ) y = 0 \]

19366

\[ {} \left (2 x^{3}-a \right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0 \]

19367

\[ {} y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

19368

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

19369

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

19370

\[ {} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = 0 \]

19371

\[ {} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

19372

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y = 0 \]

19373

\[ {} x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = 0 \]

19374

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = \sec \left (x \right ) {\mathrm e}^{x} \]

19375

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

19376

\[ {} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

19377

\[ {} y^{\prime \prime }+2 n \cot \left (n x \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y = 0 \]

19378

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

19379

\[ {} x^{2} y^{\prime \prime }-2 n x y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

19380

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

19381

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

19382

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

19383

\[ {} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

19384

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+m^{2} y = 0 \]

19385

\[ {} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\sin \left (x \right )^{2} y = 0 \]

19386

\[ {} y^{\prime \prime } \sin \left (x \right )^{2}+\sin \left (x \right ) \cos \left (x \right ) y^{\prime }+y = 0 \]

19387

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

19388

\[ {} y^{\prime \prime }+\left (\tan \left (x \right )-1\right )^{2} y^{\prime }-n \left (n -1\right ) y \sec \left (x \right )^{4} = 0 \]

19389

\[ {} y^{\prime \prime }+\left (3 \sin \left (x \right )-\cot \left (x \right )\right ) y^{\prime }+2 \sin \left (x \right )^{2} y = 0 \]

19390

\[ {} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

19391

\[ {} x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-2 y = x^{2} \]

19392

\[ {} x^{2} y^{\prime \prime }+y^{\prime }-\left (x^{2}+1\right ) y = {\mathrm e}^{-x} \]

19393

\[ {} \left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19397

\[ {} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

19399

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }-\left (x^{2}+1\right ) y = x \]

19400

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = -4 x^{3} \]

19401

\[ {} x y^{\prime }-y = \left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \]

19402

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

19403

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

19404

\[ {} \left (x^{2}+a \right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19405

\[ {} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

19406

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = x^{3}+3 x \]

19407

\[ {} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

19408

\[ {} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

19409

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\frac {a^{2} y}{-x^{2}+1} = 0 \]

19410

\[ {} \left (2 x -1\right ) y^{\prime \prime }-2 y^{\prime }+\left (3-2 x \right ) y = 2 \,{\mathrm e}^{x} \]

19411

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 8 x^{3} \]

19412

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+5\right ) y = x \,{\mathrm e}^{-\frac {x^{2}}{2}} \]

19413

\[ {} x \left (-x^{2}+1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) \left (3 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

19414

\[ {} y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y = x^{2} \]

19415

\[ {} \left (x^{3}-2 x^{2}\right ) y^{\prime \prime }+2 x^{2} y^{\prime }-12 \left (x -2\right ) y = 0 \]

19416

\[ {} x y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+\left (x +2\right ) y = \left (x -2\right ) {\mathrm e}^{2 x} \]

19417

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

19418

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

19419

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

19420

\[ {} x y^{\prime \prime } \left (x \cos \left (x \right )-2 \sin \left (x \right )\right )+\left (x^{2}+2\right ) y^{\prime } \sin \left (x \right )-2 y \left (x \sin \left (x \right )+\cos \left (x \right )\right ) = 0 \]

19421

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

19422

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-\left (4 x^{2}-3 x -5\right ) y^{\prime }+\left (4 x^{2}-6 x -5\right ) y = {\mathrm e}^{2 x} \]

19423

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime } = m^{2} y \]

19424

\[ {} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

19425

\[ {} x y^{\prime \prime }+\left (x^{2}+1\right ) y^{\prime }+2 x y = 2 x \]

19426

\[ {} \left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19427

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

19428

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

19499

\[ {} x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1 \]

19500

\[ {} x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

19501

\[ {} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{2}+3 x \]

19502

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

19503

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

19504

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 2 x^{2} \]

19505

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

19506

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

19507

\[ {} \left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

19508

\[ {} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

19509

\[ {} 16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 \left (1+x \right ) y^{\prime }+y = x^{2}+4 x +3 \]

19510

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

19511

\[ {} 2 x^{2} y y^{\prime \prime }+4 y^{2} = x^{2} {y^{\prime }}^{2}+2 x y y^{\prime } \]

19512

\[ {} x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

19513

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

19514

\[ {} \left (x^{2}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y^{\prime } = 0 \]

19515

\[ {} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}} \]