4.24.39 Problems 3801 to 3900

Table 4.1087: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

18951

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

18952

\[ {} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

18953

\[ {} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

18954

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

18955

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

18956

\[ {} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

18966

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

18967

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0 \]

19236

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

19237

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

19238

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0 \]

19239

\[ {} x^{2} y^{\prime \prime \prime }-2 y^{\prime } = 0 \]

19240

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = \ln \left (x \right )^{2} \]

19241

\[ {} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

19242

\[ {} x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-4 y^{\prime } = 0 \]

19243

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

19244

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

19245

\[ {} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = 0 \]

19246

\[ {} x^{2} y^{\prime \prime }+y = 3 x^{2} \]

19247

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

19248

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

19249

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \]

19250

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

19251

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

19252

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

19253

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime } = \ln \left (x \right ) \]

19254

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

19255

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = x \]

19256

\[ {} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = x \]

19257

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 4 x \]

19258

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

19259

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2} \]

19260

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = x^{2}+\frac {1}{x^{2}} \]

19261

\[ {} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

19262

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

19263

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

19264

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = x \ln \left (x \right ) \]

19265

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2} \]

19266

\[ {} \left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0 \]

19267

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right ) \]

19268

\[ {} x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

19269

\[ {} y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right ) = {\mathrm e}^{x} \]

19270

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19271

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

19272

\[ {} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

19273

\[ {} y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

19274

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y = 0 \]

19275

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y = 0 \]

19276

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 2 x \]

19277

\[ {} \left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (6 x +3\right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19278

\[ {} x y y^{\prime \prime }+x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

19279

\[ {} \left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y = 0 \]

19280

\[ {} y^{\prime \prime } \sin \left (x \right )-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

19281

\[ {} x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y = 2 \]

19282

\[ {} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right ) \]

19283

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

19284

\[ {} x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

19286

\[ {} y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

19289

\[ {} \cos \left (x \right )^{2} y^{\prime \prime } = 1 \]

19290

\[ {} x^{3} y^{\prime \prime \prime } = 1 \]

19292

\[ {} y^{\prime \prime \prime } \csc \left (x \right )^{2} = 1 \]

19293

\[ {} y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x \]

19294

\[ {} x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

19296

\[ {} y^{3} y^{\prime \prime } = a \]

19298

\[ {} y^{\prime \prime }+\frac {a^{2}}{y} = 0 \]

19299

\[ {} y^{\prime \prime } = y^{3}-y \]

19300

\[ {} y^{\prime \prime } = {\mathrm e}^{2 y} \]

19301

\[ {} y^{\prime \prime } = x y^{\prime } \]

19302

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19304

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

19305

\[ {} x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4 \]

19306

\[ {} y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

19307

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+a x = 0 \]

19308

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = a x \]

19309

\[ {} x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0 \]

19310

\[ {} x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

19311

\[ {} y^{\prime }-x y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19312

\[ {} x y^{\prime \prime }+y^{\prime } = x \]

19313

\[ {} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19314

\[ {} y^{\prime \prime }+y y^{\prime } = 0 \]

19315

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

19316

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime } = 0 \]

19317

\[ {} y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0 \]

19318

\[ {} y^{\prime \prime } = a {y^{\prime }}^{2} \]

19319

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19320

\[ {} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19322

\[ {} a^{2} y^{\prime \prime } y^{\prime } = x \]

19323

\[ {} y^{\prime \prime \prime } y^{\prime \prime } = 2 \]

19324

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

19325

\[ {} a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19326

\[ {} y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

19327

\[ {} a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19328

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19329

\[ {} y^{\prime } = x y^{\prime \prime }+\sqrt {1+{y^{\prime }}^{2}} \]

19333

\[ {} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19334

\[ {} x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime } \]

19335

\[ {} n \,x^{3} y^{\prime \prime \prime } = y-x y^{\prime } \]

19336

\[ {} x y y^{\prime \prime }+x {y^{\prime }}^{2} = 3 y y^{\prime } \]

19337

\[ {} 2 x^{2} y y^{\prime \prime }+y^{2} = x^{2} {y^{\prime }}^{2} \]

19338

\[ {} x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+n y^{2}} \]