Internal
problem
ID
[7769]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
6.
Existence
and
uniqueness
of
solutions
to
systems
and
nth
order
equations.
Page
250
Problem
number
:
3
Date
solved
:
Wednesday, March 05, 2025 at 05:03:16 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(x),x) = y__1(x), diff(y__2(x),x) = y__1(x)+y__2(x)]; ic:=y__1(0) = 1y__2(0) = 2; dsolve([ode,ic]);
ode={D[ y1[x],x]==y1[x],D[ y2[x],x]==y1[x]+y2[x]}; ic={y1[0]==1,y2[0]==2}; DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(-y__1(x) + Derivative(y__1(x), x),0),Eq(-y__1(x) - y__2(x) + Derivative(y__2(x), x),0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)