49.24.2 problem 4

Internal problem ID [7770]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 250
Problem number : 4
Date solved : Wednesday, March 05, 2025 at 05:03:17 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d x}y_{1} \left (x \right )&=y_{2} \left (x \right )\\ \frac {d}{d x}y_{2} \left (x \right )&=6 y_{1} \left (x \right )+y_{2} \left (x \right ) \end{align*}

With initial conditions

\begin{align*} y_{1} \left (0\right ) = 1\\ y_{2} \left (0\right ) = -1 \end{align*}

Maple. Time used: 0.023 (sec). Leaf size: 33
ode:=[diff(y__1(x),x) = y__2(x), diff(y__2(x),x) = 6*y__1(x)+y__2(x)]; 
ic:=y__1(0) = 1y__2(0) = -1; 
dsolve([ode,ic]);
 
\begin{align*} y_{1} \left (x \right ) &= \frac {4 \,{\mathrm e}^{-2 x}}{5}+\frac {{\mathrm e}^{3 x}}{5} \\ y_{2} \left (x \right ) &= -\frac {8 \,{\mathrm e}^{-2 x}}{5}+\frac {3 \,{\mathrm e}^{3 x}}{5} \\ \end{align*}
Mathematica. Time used: 0.004 (sec). Leaf size: 42
ode={D[ y1[x],x]==y2[x],D[ y2[x],x]==6*y1[x]+y2[x]}; 
ic={y1[0]==1,y2[0]==-1}; 
DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
 
\begin{align*} \text {y1}(x)\to \frac {1}{5} e^{-2 x} \left (e^{5 x}+4\right ) \\ \text {y2}(x)\to \frac {1}{5} e^{-2 x} \left (3 e^{5 x}-8\right ) \\ \end{align*}
Sympy. Time used: 0.100 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
y__1 = Function("y__1") 
y__2 = Function("y__2") 
ode=[Eq(-y__2(x) + Derivative(y__1(x), x),0),Eq(-6*y__1(x) - y__2(x) + Derivative(y__2(x), x),0)] 
ics = {} 
dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)
 
\[ \left [ y^{1}{\left (x \right )} = - \frac {C_{1} e^{- 2 x}}{2} + \frac {C_{2} e^{3 x}}{3}, \ y^{2}{\left (x \right )} = C_{1} e^{- 2 x} + C_{2} e^{3 x}\right ] \]