4.25.5 Problems 401 to 500

Table 4.1101: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

8070

\[ {} y^{\prime \prime } = -3 y \]

8177

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

8219

\[ {} y^{\prime \prime }+y = 0 \]

8221

\[ {} y^{\prime \prime }-y = 0 \]

8223

\[ {} y^{\prime \prime }-y^{\prime } = 0 \]

8225

\[ {} y^{\prime \prime }+2 y^{\prime } = 0 \]

8307

\[ {} y^{\prime \prime }+y = 0 \]

8328

\[ {} y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]

8335

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

8338

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8342

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

8343

\[ {} 2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

8346

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8347

\[ {} y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]

8377

\[ {} y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

8500

\[ {} y^{\prime \prime }+\beta ^{2} y = 0 \]

8752

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8753

\[ {} 5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8766

\[ {} y^{\prime \prime } = 0 \]

8773

\[ {} y y^{\prime \prime } = 0 \]

8777

\[ {} y^{2} y^{\prime \prime } = 0 \]

8782

\[ {} a y y^{\prime \prime }+b y = 0 \]

8800

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

8801

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

8802

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

8859

\[ {} y^{\prime \prime }+c y^{\prime }+k y = 0 \]

9072

\[ {} y^{\prime \prime } = 0 \]

9073

\[ {} {y^{\prime \prime }}^{2} = 0 \]

9074

\[ {} {y^{\prime \prime }}^{n} = 0 \]

9075

\[ {} a y^{\prime \prime } = 0 \]

9076

\[ {} a {y^{\prime \prime }}^{2} = 0 \]

9077

\[ {} a {y^{\prime \prime }}^{n} = 0 \]

9082

\[ {} {y^{\prime \prime }}^{3} = 0 \]

9083

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

9092

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

9564

\[ {} y^{\prime \prime }-y^{\prime }+y = 0 \]

9677

\[ {} y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

9959

\[ {} u^{\prime \prime }+2 u^{\prime }+u = 0 \]

9991

\[ {} y^{\prime \prime } = 0 \]

10997

\[ {} y^{\prime \prime } = 0 \]

10998

\[ {} y^{\prime \prime }+y = 0 \]

11002

\[ {} y^{\prime \prime }-y = 0 \]

11005

\[ {} y^{\prime \prime }+l y = 0 \]

11026

\[ {} y^{\prime \prime }+a y^{\prime }+b y = 0 \]

12422

\[ {} y^{\prime \prime }+a y = 0 \]

12432

\[ {} y^{\prime \prime }+a y^{\prime }+b y = 0 \]

12840

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

12841

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

12949

\[ {} x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

12954

\[ {} 2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

13033

\[ {} x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

13034

\[ {} x^{\prime \prime }-2 x^{\prime } = 0 \]

13035

\[ {} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

13036

\[ {} x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

13037

\[ {} x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

13038

\[ {} x^{\prime \prime }-2 x^{\prime } = 0 \]

13039

\[ {} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

13040

\[ {} x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

13041

\[ {} x^{\prime \prime }+x^{\prime }+4 x = 0 \]

13042

\[ {} x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]

13043

\[ {} x^{\prime \prime }+9 x = 0 \]

13044

\[ {} x^{\prime \prime }-12 x = 0 \]

13045

\[ {} 2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]

13046

\[ {} \frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]

13047

\[ {} x^{\prime \prime }+x^{\prime }+x = 0 \]

13048

\[ {} x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]

13095

\[ {} x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

13107

\[ {} x^{\prime \prime }-x^{\prime }-6 x = 0 \]

13108

\[ {} x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

13110

\[ {} x^{\prime \prime }-x^{\prime } = 0 \]

13168

\[ {} y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

13175

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

13182

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13185

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13186

\[ {} y^{\prime \prime }+y = 0 \]

13187

\[ {} y^{\prime \prime }+y = 0 \]

13188

\[ {} y^{\prime \prime }+y = 0 \]

13313

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

13314

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

13317

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

13328

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13329

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

13330

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

13331

\[ {} 3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

13334

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13335

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13336

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13337

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

13338

\[ {} y^{\prime \prime }+9 y = 0 \]

13339

\[ {} 4 y^{\prime \prime }+y = 0 \]

13352

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13353

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

13354

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]

13355

\[ {} 3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

13356

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

13357

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

13358

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

13359

\[ {} 9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

13360

\[ {} y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

13361

\[ {} y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]