4.25.6 Problems 501 to 600

Table 4.1103: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

13362

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

13363

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13364

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]

13365

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]

13567

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13568

\[ {} y^{\prime \prime }+y^{\prime }-12 y = 0 \]

13570

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13599

\[ {} y^{\prime \prime }+\lambda y = 0 \]

13600

\[ {} y^{\prime \prime }+\lambda y = 0 \]

13601

\[ {} y^{\prime \prime }+\lambda y = 0 \]

13602

\[ {} y^{\prime \prime }+\lambda y = 0 \]

13671

\[ {} x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]

13672

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

13673

\[ {} z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]

13674

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13675

\[ {} y^{\prime \prime }-4 y^{\prime } = 0 \]

13676

\[ {} \theta ^{\prime \prime }+4 \theta = 0 \]

13677

\[ {} y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

13678

\[ {} 2 z^{\prime \prime }+7 z^{\prime }-4 z = 0 \]

13679

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13680

\[ {} x^{\prime \prime }+6 x^{\prime }+10 x = 0 \]

13681

\[ {} 4 x^{\prime \prime }-20 x^{\prime }+21 x = 0 \]

13682

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

13683

\[ {} y^{\prime \prime }-4 y = 0 \]

13684

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

13685

\[ {} y^{\prime \prime }+\omega ^{2} y = 0 \]

13727

\[ {} a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0 \]

13901

\[ {} y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13903

\[ {} 2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

13940

\[ {} y^{\prime \prime }+9 y = 0 \]

13941

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

13942

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13943

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

13944

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

13945

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]

13946

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

13947

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13948

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]

13949

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]

13950

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

13952

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

13953

\[ {} y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]

13954

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

13955

\[ {} 3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]

13956

\[ {} 2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

13957

\[ {} 4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]

13958

\[ {} y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]

14070

\[ {} y^{\prime \prime }+\alpha ^{2} y = 0 \]

14071

\[ {} y^{\prime \prime }-\alpha ^{2} y = 0 \]

14072

\[ {} y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

14149

\[ {} y^{\prime \prime } = a^{2} y \]

14158

\[ {} y^{\prime \prime } = 9 y \]

14159

\[ {} y^{\prime \prime }+y = 0 \]

14160

\[ {} y^{\prime \prime }-y = 0 \]

14161

\[ {} y^{\prime \prime }+12 y = 7 y^{\prime } \]

14162

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

14163

\[ {} y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

14164

\[ {} y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

14165

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

14166

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

14188

\[ {} y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]

14234

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

14244

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

14245

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14256

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

14258

\[ {} y^{\prime \prime }-y = 0 \]

14261

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14262

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14263

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14264

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14407

\[ {} y^{\prime \prime }-y = 0 \]

14408

\[ {} y^{\prime \prime }+y = 0 \]

14411

\[ {} y^{\prime \prime }-y = 0 \]

14417

\[ {} 4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

14427

\[ {} y^{\prime \prime }+\alpha y = 0 \]

14443

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

14460

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14783

\[ {} y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

14784

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14814

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

14815

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14816

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14817

\[ {} y^{\prime \prime }+2 y = 0 \]

14896

\[ {} y^{\prime \prime }+16 y = 0 \]

14898

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15132

\[ {} y^{\prime \prime } = y^{\prime } \]

15152

\[ {} y^{\prime \prime } = y^{\prime } \]

15166

\[ {} y^{\prime \prime } = y^{\prime } \]

15193

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

15194

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

15201

\[ {} y^{\prime \prime }+y = 0 \]

15217

\[ {} y^{\prime \prime }+4 y = 0 \]

15218

\[ {} y^{\prime \prime }-4 y = 0 \]

15219

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

15220

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

15230

\[ {} y^{\prime \prime }-4 y = 0 \]

15231

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

15232

\[ {} y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]

15233

\[ {} y^{\prime \prime }+5 y^{\prime } = 0 \]

15236

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]