50.2.18 problem 4

Internal problem ID [7824]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS. Page 12
Problem number : 4
Date solved : Wednesday, March 05, 2025 at 05:07:17 AM
CAS classification : [[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

\begin{align*} y^{\prime \prime } y^{\prime }&=x \left (1+x \right ) \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 51
ode:=diff(diff(y(x),x),x)*diff(y(x),x) = x*(1+x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\left (\int \sqrt {6 x^{3}+9 x^{2}+9 c_{1}}d x \right )}{3}+c_{2} \\ y &= \frac {\left (\int \sqrt {6 x^{3}+9 x^{2}+9 c_{1}}d x \right )}{3}+c_{2} \\ \end{align*}
Mathematica. Time used: 61.314 (sec). Leaf size: 12885
ode=D[y[x],{x,2}]*D[y[x],x]==x*(1+x); 
ic={y[1]==3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy. Time used: 2.249 (sec). Leaf size: 44
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*(x + 1) + Derivative(y(x), x)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \frac {\int \sqrt {C_{2} + 6 x^{3} + 9 x^{2}}\, dx}{3}, \ y{\left (x \right )} = C_{1} + \frac {\int \sqrt {C_{2} + 6 x^{3} + 9 x^{2}}\, dx}{3}\right ] \]