50.3.1 problem 1(a)

Internal problem ID [7825]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations. Page 15
Problem number : 1(a)
Date solved : Wednesday, March 05, 2025 at 05:07:19 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }-x y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x)-x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {x^{2}}{2}} c_{1} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 22
ode=D[y[x],x]-x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 e^{\frac {x^2}{2}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.251 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x^{2}}{2}} \]