50.3.22 problem 4(b)

Internal problem ID [7846]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations. Page 15
Problem number : 4(b)
Date solved : Wednesday, March 05, 2025 at 05:08:23 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} y-x y^{\prime }&=y^{\prime } y^{2} {\mathrm e}^{y} \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 17
ode:=y(x)-x*diff(y(x),x) = diff(y(x),x)*y(x)^2*exp(y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ -y \,{\mathrm e}^{y}-c_{1} y+x = 0 \]
Mathematica. Time used: 0.227 (sec). Leaf size: 18
ode=y[x]-x*D[y[x],x]==D[y[x],x]*y[x]^2*Exp[y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [x=e^{y(x)} y(x)+c_1 y(x),y(x)\right ] \]
Sympy. Time used: 0.818 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) - y(x)**2*exp(y(x))*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ C_{1} + \frac {x}{y{\left (x \right )}} - e^{y{\left (x \right )}} = 0 \]