52.1.12 problem 10

Internal problem ID [8229]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. Section 6.2 SOLUTIONS ABOUT ORDINARY POINTS. EXERCISES 6.2. Page 246
Problem number : 10
Date solved : Monday, January 27, 2025 at 03:46:30 PM
CAS classification : [_Hermite]

\begin{align*} y^{\prime \prime }-x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 39

Order:=8; 
dsolve(diff(y(x),x$2)-x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (-x^{2}+1\right ) y \left (0\right )+\left (x -\frac {1}{6} x^{3}-\frac {1}{120} x^{5}-\frac {1}{1680} x^{7}\right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 40

AsymptoticDSolveValue[D[y[x],{x,2}]-x*D[y[x],x]+2*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 \left (1-x^2\right )+c_2 \left (-\frac {x^7}{1680}-\frac {x^5}{120}-\frac {x^3}{6}+x\right ) \]