Internal
problem
ID
[8029]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
2.
Section
2.7.
HIGHER
ORDER
LINEAR
EQUATIONS,
COUPLED
HARMONIC
OSCILLATORS
Page
98
Problem
number
:
14
Date
solved
:
Wednesday, March 05, 2025 at 05:23:30 AM
CAS
classification
:
[[_high_order, _missing_x]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)-5*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+D[y[x],{x,3}]-3*D[y[x],{x,2}]-5*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*y(x) - 5*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)