Internal
problem
ID
[8030]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
2.
Section
2.7.
HIGHER
ORDER
LINEAR
EQUATIONS,
COUPLED
HARMONIC
OSCILLATORS
Page
98
Problem
number
:
15
Date
solved
:
Wednesday, March 05, 2025 at 05:23:30 AM
CAS
classification
:
[[_high_order, _missing_x]]
ode:=diff(diff(diff(diff(diff(y(x),x),x),x),x),x)-6*diff(diff(diff(diff(y(x),x),x),x),x)-8*diff(diff(diff(y(x),x),x),x)+48*diff(diff(y(x),x),x)+16*diff(y(x),x)-96*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,5}]-6*D[y[x],{x,4}]-8*D[y[x],{x,3}]+48*D[y[x],{x,2}]+16*D[y[x],x]-96*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-96*y(x) + 16*Derivative(y(x), x) + 48*Derivative(y(x), (x, 2)) - 8*Derivative(y(x), (x, 3)) - 6*Derivative(y(x), (x, 4)) + Derivative(y(x), (x, 5)),0) ics = {} dsolve(ode,func=y(x),ics=ics)