50.28.1 problem 1(a)

Internal problem ID [8188]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number : 1(a)
Date solved : Wednesday, March 05, 2025 at 05:31:46 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-3 x \left (t \right )+4 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-2 x \left (t \right )+3 y \left (t \right ) \end{align*}

Maple. Time used: 0.016 (sec). Leaf size: 30
ode:=[diff(x(t),t) = -3*x(t)+4*y(t), diff(y(t),t) = -2*x(t)+3*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{-t} c_{1} +c_{2} {\mathrm e}^{t} \\ y &= \frac {{\mathrm e}^{-t} c_{1}}{2}+c_{2} {\mathrm e}^{t} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 67
ode={D[x[t],t]==-3*x[t]+4*y[t],D[y[t],t]==-2*x[t]+3*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to e^{-t} \left (2 c_2 \left (e^{2 t}-1\right )-c_1 \left (e^{2 t}-2\right )\right ) \\ y(t)\to e^{-t} \left (c_2 \left (2 e^{2 t}-1\right )-c_1 \left (e^{2 t}-1\right )\right ) \\ \end{align*}
Sympy. Time used: 0.079 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(3*x(t) - 4*y(t) + Derivative(x(t), t),0),Eq(2*x(t) - 3*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = 2 C_{1} e^{- t} + C_{2} e^{t}, \ y{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{t}\right ] \]