54.3.15 problem 15

Internal problem ID [8571]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 17. Power series solutions. 17.5. Solutions Near an Ordinary Point. Exercises page 355
Problem number : 15
Date solved : Monday, January 27, 2025 at 04:16:35 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }-3 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 33

Order:=8; 
dsolve((1+2*x^2)*diff(y(x),x$2)+3*x*diff(y(x),x)-3*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {3}{2} x^{2}-\frac {7}{8} x^{4}+\frac {77}{80} x^{6}\right ) y \left (0\right )+y^{\prime }\left (0\right ) x +O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 34

AsymptoticDSolveValue[(1+2*x^2)*D[y[x],{x,2}]+3*x*D[y[x],x]-3*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_1 \left (\frac {77 x^6}{80}-\frac {7 x^4}{8}+\frac {3 x^2}{2}+1\right )+c_2 x \]