Internal
problem
ID
[8290]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
6
SERIES
SOLUTIONS
OF
LINEAR
EQUATIONS.
6.4
SPECIAL
FUNCTIONS.
EXERCISES
6.4.
Page
267
Problem
number
:
4
Date
solved
:
Wednesday, March 05, 2025 at 05:34:11 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=16*x^2*diff(diff(y(x),x),x)+16*x*diff(y(x),x)+(16*x^2-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=16*x^2*D[y[x],{x,2}]+16*x*D[y[x],x]+(16*x^2-1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(16*x**2*Derivative(y(x), (x, 2)) + 16*x*Derivative(y(x), x) + (16*x**2 - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)