52.3.4 problem 4

Internal problem ID [8290]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. 6.4 SPECIAL FUNCTIONS. EXERCISES 6.4. Page 267
Problem number : 4
Date solved : Wednesday, March 05, 2025 at 05:34:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 15
ode:=16*x^2*diff(diff(y(x),x),x)+16*x*diff(y(x),x)+(16*x^2-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} \operatorname {BesselJ}\left (\frac {1}{4}, x\right )+c_{2} \operatorname {BesselY}\left (\frac {1}{4}, x\right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 22
ode=16*x^2*D[y[x],{x,2}]+16*x*D[y[x],x]+(16*x^2-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \operatorname {BesselJ}\left (\frac {1}{4},x\right )+c_2 \operatorname {BesselY}\left (\frac {1}{4},x\right ) \]
Sympy. Time used: 0.221 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(16*x**2*Derivative(y(x), (x, 2)) + 16*x*Derivative(y(x), x) + (16*x**2 - 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} J_{\frac {1}{4}}\left (x\right ) + C_{2} Y_{\frac {1}{4}}\left (x\right ) \]