52.3.7 problem 7

Internal problem ID [8293]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. 6.4 SPECIAL FUNCTIONS. EXERCISES 6.4. Page 267
Problem number : 7
Date solved : Wednesday, March 05, 2025 at 05:34:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 44
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(9*x^2-4)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-3 \operatorname {BesselJ}\left (0, 3 x \right ) c_{1} x -3 \operatorname {BesselY}\left (0, 3 x \right ) c_{2} x +2 \operatorname {BesselJ}\left (1, 3 x \right ) c_{1} +2 \operatorname {BesselY}\left (1, 3 x \right ) c_{2}}{3 x} \]
Mathematica. Time used: 0.019 (sec). Leaf size: 22
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(9*x^2-4)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \operatorname {BesselJ}(2,3 x)+c_2 \operatorname {BesselY}(2,3 x) \]
Sympy. Time used: 0.240 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (9*x**2 - 4)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} J_{2}\left (3 x\right ) + C_{2} Y_{2}\left (3 x\right ) \]