54.9.6 problem 6

Internal problem ID [8676]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 18. Power series solutions. Miscellaneous Exercises. page 394
Problem number : 6
Date solved : Monday, January 27, 2025 at 04:19:01 PM
CAS classification : [_Gegenbauer]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-10 x y^{\prime }-18 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 49

Order:=8; 
dsolve((1-x^2)*diff(y(x),x$2)-10*x*diff(y(x),x)-18*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (70 x^{6}+30 x^{4}+9 x^{2}+1\right ) y \left (0\right )+\left (x +\frac {14}{3} x^{3}+\frac {63}{5} x^{5}+\frac {132}{5} x^{7}\right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 50

AsymptoticDSolveValue[(1-x^2)*D[y[x],{x,2}]-10*x*D[y[x],x]-18*y[x]==0,y[x],{x,0,"8"-1}]
 
\[ y(x)\to c_2 \left (\frac {132 x^7}{5}+\frac {63 x^5}{5}+\frac {14 x^3}{3}+x\right )+c_1 \left (70 x^6+30 x^4+9 x^2+1\right ) \]