52.3.17 problem 19

Internal problem ID [8303]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. 6.4 SPECIAL FUNCTIONS. EXERCISES 6.4. Page 267
Problem number : 19
Date solved : Wednesday, March 05, 2025 at 05:34:32 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x y^{\prime \prime }+3 y^{\prime }+x^{3} y&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 25
ode:=x*diff(diff(y(x),x),x)+3*diff(y(x),x)+x^3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_{1} \sin \left (\frac {x^{2}}{2}\right )+c_{2} \cos \left (\frac {x^{2}}{2}\right )}{x^{2}} \]
Mathematica. Time used: 0.092 (sec). Leaf size: 43
ode=x*D[y[x],{x,2}]+3*D[y[x],x]+x^3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^{-\frac {i x^2}{2}} \left (2 c_1-i c_2 e^{i x^2}\right )}{2 x^2} \]
Sympy. Time used: 0.209 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*y(x) + x*Derivative(y(x), (x, 2)) + 3*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} J_{\frac {1}{2}}\left (\frac {x^{2}}{2}\right ) + C_{2} Y_{\frac {1}{2}}\left (\frac {x^{2}}{2}\right )}{x} \]