52.3.18 problem 20

Internal problem ID [8304]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. 6.4 SPECIAL FUNCTIONS. EXERCISES 6.4. Page 267
Problem number : 20
Date solved : Wednesday, March 05, 2025 at 05:34:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 23
ode:=9*x^2*diff(diff(y(x),x),x)+9*x*diff(y(x),x)+(x^6-36)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} \operatorname {BesselJ}\left (\frac {2}{3}, \frac {x^{3}}{9}\right )+c_{2} \operatorname {BesselY}\left (\frac {2}{3}, \frac {x^{3}}{9}\right ) \]
Mathematica. Time used: 0.148 (sec). Leaf size: 43
ode=9*x^2*D[y[x],{x,2}]+9*x*D[y[x],x]+(x^6-36)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 3 c_1 \operatorname {Gamma}\left (\frac {4}{3}\right ) \operatorname {BesselJ}\left (-\frac {2}{3},\frac {x^3}{9}\right )+c_2 \operatorname {Gamma}\left (\frac {5}{3}\right ) \operatorname {BesselJ}\left (\frac {2}{3},\frac {x^3}{9}\right ) \]
Sympy. Time used: 0.218 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*x**2*Derivative(y(x), (x, 2)) + 9*x*Derivative(y(x), x) + (x**6 - 36)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} J_{\frac {2}{3}}\left (\frac {x^{3}}{9}\right ) + C_{2} Y_{\frac {2}{3}}\left (\frac {x^{3}}{9}\right ) \]