52.3.19 problem 22(a)

Internal problem ID [8305]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. 6.4 SPECIAL FUNCTIONS. EXERCISES 6.4. Page 267
Problem number : 22(a)
Date solved : Wednesday, March 05, 2025 at 05:34:36 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} y^{\prime \prime }-x^{2} y&=0 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 27
ode:=diff(diff(y(x),x),x)-x^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) c_{2} +\operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) c_{1} \right ) \sqrt {x} \]
Mathematica. Time used: 0.02 (sec). Leaf size: 37
ode=D[y[x],{x,2}]-x^2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},i \sqrt {2} x\right )+c_1 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},\sqrt {2} x\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False