Internal
problem
ID
[8317]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
6
SERIES
SOLUTIONS
OF
LINEAR
EQUATIONS.
CHAPTER
6
IN
REVIEW.
Page
271
Problem
number
:
15
Date
solved
:
Wednesday, March 05, 2025 at 05:34:56 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=8; ode:=diff(diff(y(x),x),x)+x*diff(y(x),x)+2*y(x) = 0; ic:=y(0) = 3, D(y)(0) = -2; dsolve([ode,ic],y(x),type='series',x=0);
ode=D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0; ic={y[0]==3,Derivative[1][y][0] ==-2}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + 2*y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 3, Subs(Derivative(y(x), x), x, 0): -2} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=8)