Internal
problem
ID
[8743]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
32
Date
solved
:
Monday, January 27, 2025 at 04:46:06 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
Time used: 4.072 (sec). Leaf size: 30
\[
x \left (t \right ) = \frac {-\sqrt {4 \left (t -3\right ) c_{1} +1}-1+\left (-4 t +8\right ) c_{1}}{2 c_{1}}
\]
Time used: 60.104 (sec). Leaf size: 1165
\begin{align*}
x(t)\to -2-\frac {2 (t-3)}{t \sqrt {\frac {3}{(t-3)^2}-\frac {3 (t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}-\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}-3 \sqrt {\frac {3}{(t-3)^2}-\frac {3 (t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}-\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}+1} \\
x(t)\to -2+\frac {2 (t-3)}{t \sqrt {\frac {3}{(t-3)^2}-\frac {3 (t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}-\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}-3 \sqrt {\frac {3}{(t-3)^2}-\frac {3 (t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}-\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}-1} \\
x(t)\to -2-\frac {2 (t-3)}{t \sqrt {\frac {3}{(t-3)^2}-\frac {3 (t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}+\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}-3 \sqrt {\frac {3}{(t-3)^2}-\frac {3 (t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}+\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}+1} \\
x(t)\to -2+\frac {2 (t-3)}{t \sqrt {\frac {3}{(t-3)^2}-\frac {3 (t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}+\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}-3 \sqrt {\frac {3}{(t-3)^2}-\frac {3 (t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+3 (t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+2}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right )}+\sqrt {-\frac {\cosh \left (\frac {4 c_1}{9}\right )+\sinh \left (\frac {4 c_1}{9}\right )}{(t-3)^2 \left ((t-3)^2 \cosh \left (\frac {4 c_1}{9}\right )+(t-3)^2 \sinh \left (\frac {4 c_1}{9}\right )+1\right ){}^2}}}-1} \\
\end{align*}