Internal
problem
ID
[8362]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
7
THE
LAPLACE
TRANSFORM.
7.4.1
DERIVATIVES
OF
A
TRANSFORM.
Page
309
Problem
number
:
17
Date
solved
:
Wednesday, March 05, 2025 at 05:35:54 AM
CAS
classification
:
[[_2nd_order, _missing_y]]
With initial conditions
ode:=t*diff(diff(y(t),t),t)-diff(y(t),t) = 2*t^2; ic:=y(0) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],{t,2}]-D[y[t],t]==2*t^2; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*t**2 + t*Derivative(y(t), (t, 2)) - Derivative(y(t), t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)