56.2.36 problem 35

Internal problem ID [8840]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 35
Date solved : Tuesday, January 28, 2025 at 03:16:56 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-x^{2} y-x^{3}&=0 \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 32

dsolve(diff(y(x),x$2)-x^2*y(x)-x^3=0,y(x), singsol=all)
 
\[ y = \sqrt {x}\, \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) c_{2} +\sqrt {x}\, \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) c_{1} -x \]

Solution by Mathematica

Time used: 4.667 (sec). Leaf size: 213

DSolve[D[y[x],{x,2}]-x^2*y[x]-x^3==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},\sqrt {2} x\right ) \left (\int _1^x\frac {K[1]^3 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},i \sqrt {2} K[1]\right )}{\sqrt {2} \left (\operatorname {HermiteH}\left (-\frac {1}{2},K[1]\right ) \left (i \operatorname {HermiteH}\left (\frac {1}{2},i K[1]\right )+2 \operatorname {HermiteH}\left (-\frac {1}{2},i K[1]\right ) K[1]\right )-\operatorname {HermiteH}\left (-\frac {1}{2},i K[1]\right ) \operatorname {HermiteH}\left (\frac {1}{2},K[1]\right )\right )}dK[1]+c_1\right )+\operatorname {ParabolicCylinderD}\left (-\frac {1}{2},i \sqrt {2} x\right ) \left (\int _1^x\frac {K[2]^3 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},\sqrt {2} K[2]\right )}{\sqrt {2} \left (\operatorname {HermiteH}\left (-\frac {1}{2},i K[2]\right ) \operatorname {HermiteH}\left (\frac {1}{2},K[2]\right )+\operatorname {HermiteH}\left (-\frac {1}{2},K[2]\right ) \left (-i \operatorname {HermiteH}\left (\frac {1}{2},i K[2]\right )-2 \operatorname {HermiteH}\left (-\frac {1}{2},i K[2]\right ) K[2]\right )\right )}dK[2]+c_2\right ) \]