56.2.37 problem 36
Internal
problem
ID
[8841]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
2.0
Problem
number
:
36
Date
solved
:
Monday, January 27, 2025 at 05:04:43 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
\begin{align*} y^{\prime \prime }-x^{2} y-x^{4}&=0 \end{align*}
✓ Solution by Maple
Time used: 0.015 (sec). Leaf size: 124
dsolve(diff(y(x),x$2)-x^2*y(x)-x^4=0,y(x), singsol=all)
\[
y = -\frac {\left (-\frac {3 x^{5} \operatorname {csgn}\left (x \right ) \operatorname {hypergeom}\left (\left [\frac {5}{4}\right ], \left [\frac {3}{4}, \frac {5}{2}\right ], \frac {x^{4}}{16}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \pi ^{2}}{5}+\left (x^{6} \Gamma \left (\frac {3}{4}\right ) \operatorname {hypergeom}\left (\left [\frac {3}{2}\right ], \left [\frac {5}{4}, \frac {5}{2}\right ], \frac {x^{4}}{16}\right ) \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\frac {\pi \left (\sqrt {2}\, \Gamma \left (\frac {3}{4}\right ) \operatorname {hypergeom}\left (\left [\frac {3}{2}\right ], \left [\frac {19}{8}, \frac {5}{2}\right ], \frac {x^{4}}{16}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) x^{6}-12 \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) c_{1} -12 \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) c_{2} \right )}{2}\right ) \Gamma \left (\frac {3}{4}\right )\right ) \sqrt {x}}{6 \pi \Gamma \left (\frac {3}{4}\right )}
\]
✓ Solution by Mathematica
Time used: 3.328 (sec). Leaf size: 213
DSolve[D[y[x],{x,2}]-x^2*y[x]-x^4==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x)\to \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},\sqrt {2} x\right ) \left (\int _1^x\frac {K[1]^4 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},i \sqrt {2} K[1]\right )}{\sqrt {2} \left (\operatorname {HermiteH}\left (-\frac {1}{2},K[1]\right ) \left (i \operatorname {HermiteH}\left (\frac {1}{2},i K[1]\right )+2 \operatorname {HermiteH}\left (-\frac {1}{2},i K[1]\right ) K[1]\right )-\operatorname {HermiteH}\left (-\frac {1}{2},i K[1]\right ) \operatorname {HermiteH}\left (\frac {1}{2},K[1]\right )\right )}dK[1]+c_1\right )+\operatorname {ParabolicCylinderD}\left (-\frac {1}{2},i \sqrt {2} x\right ) \left (\int _1^x\frac {K[2]^4 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2},\sqrt {2} K[2]\right )}{\sqrt {2} \left (\operatorname {HermiteH}\left (-\frac {1}{2},i K[2]\right ) \operatorname {HermiteH}\left (\frac {1}{2},K[2]\right )+\operatorname {HermiteH}\left (-\frac {1}{2},K[2]\right ) \left (-i \operatorname {HermiteH}\left (\frac {1}{2},i K[2]\right )-2 \operatorname {HermiteH}\left (-\frac {1}{2},i K[2]\right ) K[2]\right )\right )}dK[2]+c_2\right )
\]